Indiana Brownfields Conference 2006

Bridging Economic Development and Environmental Protection

Turning Brownfields Into Greenfields
April 12, 2006

- Review BMPs; specifically the use of natural vegetation
- Briefly look at why these systems work
- Review case study examples and results

WHAT ARE BEST MANAGEMENT PRACTICES (BMPs)?

Definitions:

Combination of management, cultural and structural practices that provide the most effective and economical means of stormwater management.

A structural or non-structural device designed to temporarily store or treat urban stormwater runoff in order to mitigate flooding, reduce pollution, and provide other amenities.

Natural Vegetation BMPs

- Wetland basins
- Wetlands
- Vegetated swales
- Pond buffers
- Green roof systems
- Infiltration enhancement

Benefits of Using Native Plants

- Drought & disease resistant
- Require little maintenance once established
- Many are long-lived perennials
- Attract butterflies, hummingbirds, songbirds & beneficial insects
- Help to restore plant diversity
- They're often hardier than their non-native, cultivated cousins
- Help stabilize and restore soil

Royal Catchfly

Sunflower

Yellow Coneflower

Butterfly Weed

Pickerel Weed

Blazing Star

Blue Flag Iris

Cardinal Flower

Swamp Milkweed

Mountain Mint

Black-eyed Susan

Bergamot

Big Bluestem

WETLAND BASINS

INFILTRATION ENHANCEMENT

Porous Pavement

Description/Purpose

Porous pavement is a structural cover with regularly distributed void spaces located over a thick base of coarse gravel. The top layer is typically one of two types: a bituminous or concrete mixture without the fine aggregate or a layer of prefabricated interlocking blocks.

Criteria

 Areas of use should be medium to small in size and relatively flat. Subsoil layers will determine infiltration capabilities of the pavement.

Effects on Stormwater

 Porous pavement can be used to mitigate the impervious nature of typical paved areas. Rainfall can pass through the top layer and into the aggregate below. Some storage is provided and infiltration into the soil.

Rain Gardens

Description/Purpose

 An area in the landscape graded to force the ponding of stormwater runoff. Stormwater collects in these shallow depressions and is retained and infiltrated into the soil.

Criteria

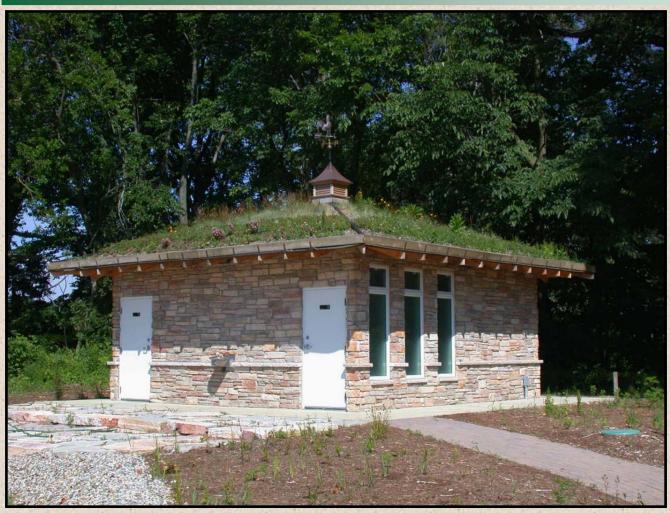
Depressions can be used on most sites and should be located within surface areas that concentrate flows and collect runoff. Soils must have minimum infiltration capacity to avoid prolonged standing water. Infiltration rates are greatly enhanced with use of native plant species. Refer to Ecoregional genotypes. Mesic prairie depressions are considered a structural ASMP.

Effects on Stormwater

 Depressions collect and retain small amounts of stormwater runoff and this has the effect of reducing runoff amounts and slowing the rate of runoff. Collected stormwater subsequently infiltrates into the soil.

Rain Gardens

VEGETATED PONDS

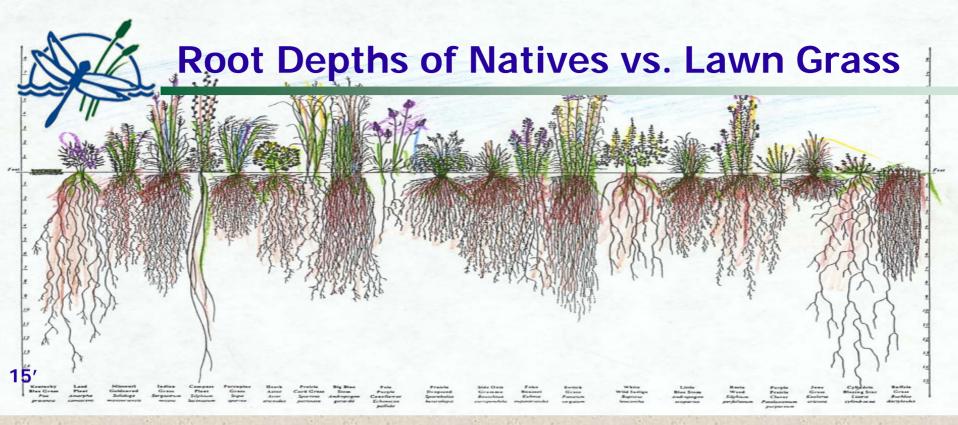


GREEN ROOF SYSTEMS

Chicago City Hall Green Roof

Ford Motor Company

Hotel Roof, 1
British Columbia


Why do Natural Systems Work?

- Interaction/contact between pollutants in water and the plant and soil media of the systems
- Biological degradation
- **■**Filtration
- Wetlands are nature's kidneys

A True Power Plant The Root Of The Matter

Land Management Options

Pasture and Row Crops

Un-Pastured Native Grasses

Mature Trees

Information based on Iowa State University study of fully mature systems

Infiltration Rates (in./hr.)

1 - 3

7 - 13

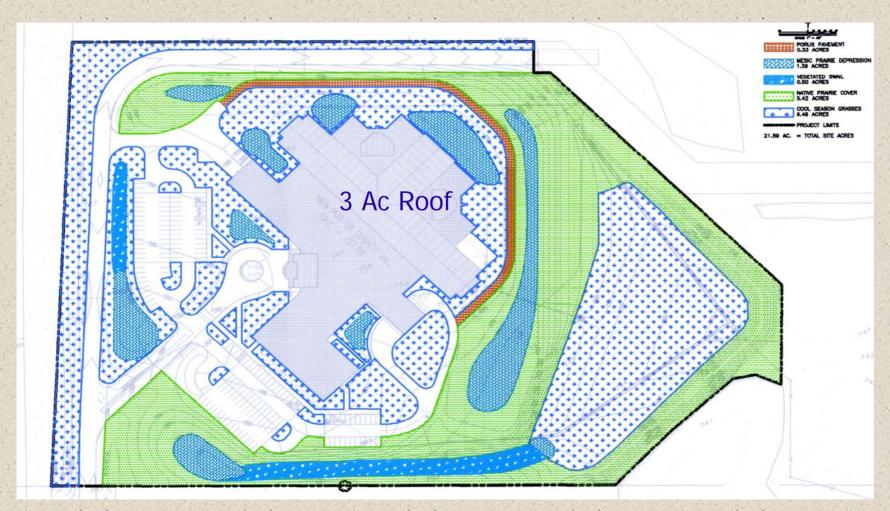
10 - 14

Summary - BMP Benefits

	Percent Pollutant Removal (%)							
	Р	Metals (Cu, Zn, Pb)	N	TSS	BOD	Organics	Bacteria	Hydro - carbon
Rain Gardens	60	90	60	30-90		90	90	
Infiltration Drainfield	65		85	80-95				
Infiltration Trench	60	90	60	90	70-80	90	90	
Infiltration Basin	60	90	60	30-90		90	90	
Porous Pavers	30-60	-	30-60	30-60			1	50+
Vegetated Swale	20-65	40-90	40-50	80-90	67			65
Bioretention Basin	65-85	80-98	50-80	90		90	90	
Constructed Wetlands	50	41-62	28	67		34	77	87
Greenroofs	65	95	80	1				
Retention Pond	50	50	30	80			50	0°50. 0°5

Turf to Prairie Conversion

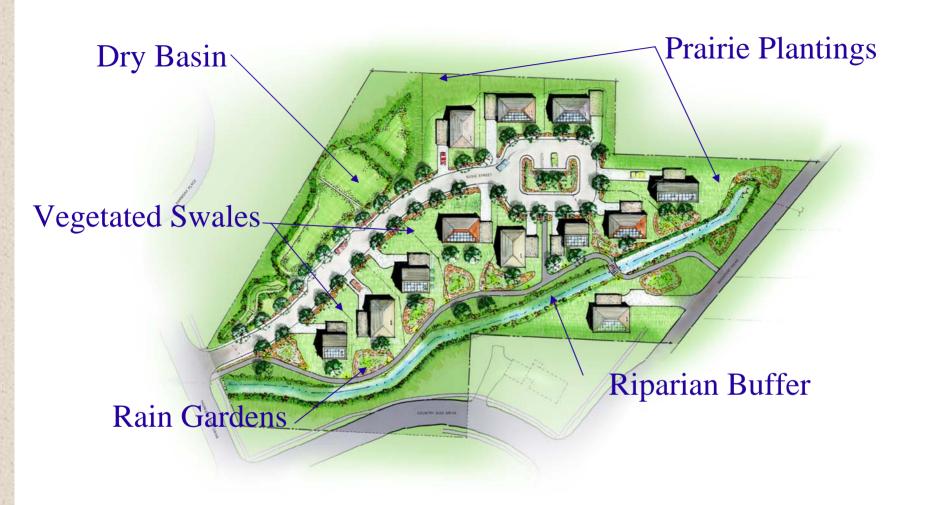
Total Cost Savings for 11 acre Prairie Conversion from Turf


	3-Year	5-Year	10-Year
Prairie Cost	\$ 86,500	\$ 99,500	\$109,500
Turf Cost	\$108,900	\$181,500	\$363,000
Total Cost Savings	\$ 22,400	\$ 82,000	\$253,500

Porter County Jail Site

- Drainage Area (21.59 Acres).
- Pre-Development Condition (CN = 82).
- Post-Development Condition (Composite CN = 89).
- Volume of runoff from impervious areas (7.79 acres) that was required to be infiltrated (0.88 acre-feet).

Results of Using BMPs - Predicted


- Pre-development runoff volume (1.29 inches=2.32 acre-ft)
- Post-development runoff volume using the proposed BMPs (0.72 inches = 1.29 acre-feet).
- Reduction in runoff volume (0.57 inches = 1.03 acrefeet) or 44%.
- Rain Garden (storage) provided on site:
 - area = 1.36 acres
 - average depth of water = 7.6 inches
 - infiltration time at 0.5 inches per hour= 15 hours

Example Low Impact Development

SOUTH ROCKPORT ROAD DEVELOPMENT - CITY OF BLOOMINGTON DEPARTMENT OF HOUSING AND NEIGHBORHOOD DEVELOPMENT

Understand the Marketing

USGBC LEED Points

Sustainable Sites

- Credit 5.1, Protect/Restore open space 1 point (Create/Restore Wetlands and Prairies)
- Credit 5.2, Reduced Site Disturbance Development Footprint 1 point (Avoid and minimize impacts to natural resources onsite: Conservation Design)
- Credit 6.1, Stormwater Management Rate and Quantity 1 point (Utilize NTS)
- Credit 6.2, Stormwater Treatment 1 point (Utilize NTS)
- Credit 7.2, Green Roof 1 point (Utilize Native plants for Green Roofs)

Water Efficiency

- Credit 1.1, Water Efficient landscaping 1 point (Utilize Drought Tolerant Natives that do not require irrigation)
- Credit 1.2, Water Efficient Landscaping 1 point (Utilize Natives)
- Credit 2, Innovative Wastewater Technologies 1 point (Utilize Wastewater Wetlands)

Wrap Up and Open Discussion

Andrew Bender, P.E. 6640 Parkdale Place Suite S Indianapolis, Indiana 46254 317-388-1982 (phone) 317-388-1986 (fax) abender@jfnew.com

www.jfnew.com